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ABSTRACT

Let S be a set of n sites hosen independently from a uniform distribution in

a ube in 3�dimensional Eulidean spae. In this paper, an expeted O(n)

algorithm for onstruting the Voronoi diagram for S together with numerial

results obtained from an implementation of the algorithm are presented.

1. INTRODUCTION

Consider a set S = fp

1

; : : : ; p

n

g of n points (to be alled sites in the following)

in the Eulidean spae E

3

, and let d(�; �) denote the Eulidean distane. The

Voronoi diagram for S is a sequene V (p

1

), : : : , V (p

n

) of onvex polyhedra

overing E

3

, where for eah i, i = 1; : : : ; n, V (p

i

), the Voronoi polyhedron of

p

i

relative to S, is de�ned by

V (p

i

) � \

n

j=1;j 6=i

fp 2 E

3

: d(p; p

i

) � d(p; p

j

)g:

The Voronoi diagram has played an important role in omputational geometry

for a long time, and several algorithms have been devised and implemented

for onstruting it in two and higher dimensions (see Bentley, Weide and Yao

(1980), Bowyer (1981), Brostow, Dussault and Fox (1978), Brown (1979),

Dwyer (1988), Finney (1979), Green and Sibson (1978), Lee and Shahter

(1980), Maus (1984), Ohya, Iri and Murota (1984), Seidel (1986), Shamos

(1978), Shamos and Hoey (1975), Tanemura, Ogawa and Ogita (1983), Watson

(1981), Witzgall (1973)).

Assume the sites in S have been hosen independently from a uniform dis-

tribution in a 3�dimensional ube. In this paper we present an expeted O(n)

1



algorithm for onstruting the Voronoi diagram for S that is a onsequene of

proofs and results in the ompanion paper Bernal (1990). Numerial results

obtained from a Fortran implementation of the algorithm are also presented.

2. TERMINOLOGY

Let S = fp

1

; : : : ; p

n

g be a set of n sites in E

3

hosen independently from a

uniform distribution in a ube R. With m de�ned as the oor of n

1=3

, i. e. the

largest integer less than or equal to n

1=3

, assume as in Bentley, et al. (1980)

that R has been divided into m

3

equal-sized ells. Given a site q, de�ne the

1

st

layer of ells that surrounds q as the olletion of ells that ontain q.

Indutively, given k � 1, assume that the k

th

layer of ells that surrounds q

has been de�ned. De�ne the (k + 1)

th

layer of ells that surrounds q as the

olletion, possibly empty, of ells that have one or more points in ommon

with ells in the k

th

layer, and that do not belong to the �rst k layers.

Let lell and vell represent, respetively, the length and volume of eah

ell.

Given numbers , 

0

, 

00

, 0 <  � 

0

, 

00

� 1, de�ne LG(n) and LG

0

(n) as the

oors of  � logn and 

0

� logn, respetively, and assume n is large enough so

that LG(n) > 2 and 2

3=2

� 

00

� LG

0

(n) � 2

�1

� n

1=3

.

Let

^

k denote the largest integer k for whih

2

k=2

� 

00

� LG

0

(n) � 2

�1

� n

1=3

:

It follows from the assumptions on n that

^

k � 3.

Set LG

0

(n) equal to LG(n), and LG

k

(n) equal to LG

0

(n) for eah k,

k = 1; : : : ;

^

k � 2.

Let f

i

, i = 1; : : : ; 6, represent the faets of R, and let � denote [

6

i=1

f

i

, i. e.

the boundary of R.

Given a point x in E

3

and a losed subsetW of E

3

, de�ne dist(x;W ) as the

minimum value of jjx�wjj for w inW , where jj�jj represents the 3�dimensional

Eulidean norm.
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From the assumptions on n, several nonempty subsets of R an be de�ned

as follows:

R

�1

� fx 2 R : dist(x;�) � lell � LG(n)g:

R

0

� fx 2 R : lell � 2 � dist(x;�) < lell � LG(n)g:

R

^

k

� fx 2 R : dist(x;�) < lell � 2

�

^

k+2

g:

For eah k, k = 1; : : : ;

^

k � 1,

R

k

� fx 2 R : lell � 2

�k+1

� dist(x;�) < lell � 2

�k+2

g:

For eah i, k, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2,

R

i

k

� fx 2 R

k

: dist(x; f

j

) � lell � 2

k=2

� 

00

� LG

k

(n); j = 1; : : : ; 6; j 6= ig:

It follows from these de�nitions that the sets R

k

, k = �1; : : : ;

^

k, are pair-wise

disjoint nested regions of the ube R, and

R = [

^

k

k=�1

R

k

:

The signi�ane of these regions for our purposes an be summarized as fol-

lows. R

�1

is essentially that region of the ube R obtained by subtrating the

outermost LG(n) layers of ells of R from R. From Bentley, et al. (1980), the

Voronoi polyhedron of a site in R

�1

an be onstruted in expeted onstant

time. R

0

is essentially that region of R obtained by subtrating from the outer-

most LG(n) layers of ells of R the outermost two layers. R

k

, k = 1; : : : ;

^

k, are

regions of R whose union is essentially that region of R omposed of the out-

ermost two layers of ells of R, and whose thiknesses orrespond to the terms

of the geometri series expanded to the �rst

^

k � 1 terms together with the re-

mainder. R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, are subsets of R

k

, k = 0; : : : ;

^

k � 2,

respetively, de�ned in suh a way that as intimated in Bernal (1990), due to

their positions relative to the boundary of R and the geometri series aspet of

R

k

, k = 1; : : : ;

^

k � 2, for a properly seleted value of 

00

the Voronoi polyhedra

of sites in these regions an be onstruted in expeted linear time. They are

also de�ned in suh a way that due to the de�nitions of

^

k, R

^

k�1

and R

^

k

, and

the geometri series aspet of R

k

, k = 1; : : : ;

^

k, the expeted number of sites

in [

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

is small enough that the Voronoi polyhedra of these

sites an also be onstruted in expeted linear time even under the worst

possible irumstanes.

Given a site q in R

�1

, let v, v

0

, v

00

and v

000

be verties of R for whih

v

0

� v, v

00

� v and v

000

� v are all perpendiular to one another, and for eah j,

j = 0; : : : ; 8, and eah m, m = 0; : : : ; 4, de�ne a point r

jm

by

r

jm

� q + ((v

0

� v) � os(j�=4) + (v

00

� v) � sin(j�=4)) � sin(m�=4)

+ (v

000

� v) � os(m�=4):
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In addition, for eah j, j = 1; : : : ; 8, and eah m, m = 1; : : : ; 4, let U

jm

be

the one that is the onvex hull of the rays q~r

j�1;m�1

, q~r

j;m�1

, q~r

j�1;m

, and

q~r

jm

, and if within the �rst LG(n) layers of ells that surround q, for eah

j, j = 1; : : : ; 8, and eah m, m = 1; : : : ; 4, there exists a site s

jm

, s

jm

6= q,

suh that s

jm

belongs to U

jm

, say that q is losed and that s

jm

, j = 1; : : : ; 8,

m = 1; : : : ; 4, render q losed. As shown in Bentley, et al. (1980), the Voronoi

polyhedron of a losed site an be onstruted in expeted onstant time.

For eah faet f of R, let H(f) represent the plane that ontains f , and

for eah site q, let T

f

(q) represent the point in f that is the perpendiular

projetion of q onto f .

Given i, k, 1 � i � 6, 0 � k �

^

k� 2, and a site q in R

i

k

, let v, v

0

and v

00

be

verties of R in f

i

for whih v

0

� v is perpendiular to v

00

� v, and for eah j,

j = 0; : : : ; 8, de�ne a point t

j

in H(f

i

) by

t

j

� T

f

i

(q) + (v

0

� v) � os(j�=4) + (v

00

� v) � sin(j�=4):

In addition, for eah j, j = 1; : : : ; 8, let O

j

be the otant in H(f

i

) that is

the onvex hull of the rays T

f

i

(q)

~

t

j�1

and T

f

i

(q)

~

t

j

, and if within the �rst

2

k=2

� LG

k

(n) layers of ells that surround q, for eah j, j = 1; : : : ; 8, there

exists a site q

j

suh that dist(q

j

; f

i

) < lell � 2

�k

and the ray q~q

j

intersets O

j

,

say that q is otant-losed and that q

j

, j = 1; : : : ; 8, render q otant-losed.

Given i, k, q, v, v

0

, v

00

as above, let v

000

be a vertex of R for whih v

000

� v is

perpendiular to v

0

� v and v

00

� v, and for eah j, j = 0; : : : ; 8, and eah m,

m = 2; 3, de�ne a point r

jm

by

r

jm

� q + ((v

0

� v) � os(j�=4) + (v

00

� v) � sin(j�=4)) � sin(m�=4)

+ (v

000

� v) � os(m�=4):

In addition, for eah j, j = 1; : : : ; 8, let U

j

be the one that is the onvex hull

of the rays q~r

j�1;2

, q~r

j2

, q~r

j�1;3

, and q~r

j3

, and if within the �rst 2

k=2

� LG

k

(n)

layers of ells that surround q, for eah j, j = 1; : : : ; 8, there exists a site s

j

,

s

j

6= q, suh that s

j

belongs to U

j

, say that q is one-semilosed and that s

j

,

j = 1; : : : ; 8, render q one-semilosed.

Given q as above, say that q is semilosed if it is otant-losed and one-

semilosed. As intimated in Bernal (1990), for a properly seleted value of



00

the onstrution of Voronoi polyhedra of semilosed sites is of expeted

omplexity aeptable for our purposes.
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Finally, given sites p and q, say that p is a Voronoi neighbor of q relative

to S if V (p) and V (q) have a faet in ommon.

3. THE ALGORITHM

In this setion we present the algorithm in the form of a proedure alled

VORNOI. The algorithm and its expeted omplexity follow from proofs and

results in the ompanion paper Bernal (1990).

Essentially, the algorithm onsists of three steps. Let n, S, R, R

�1

, R

i

k

,

i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, be as de�ned in the previous setion. In the

�rst step, the Voronoi polyhedra of sites in R

�1

are onstruted as suggested

in Bentley, et al. (1980). Given a site in R

�1

, a geometrial proedure is

available for onstruting in expeted onstant time the Voronoi polyhedron

of the site. Thus, the �rst step of the algorithm has expeted linear om-

plexity. In the seond step, the Voronoi polyhedra of sites in R

i

k

, i = 1; : : : ; 6,

k = 0; : : : ;

^

k � 2, are onstruted as intimated in Bernal (1990). Given a site

in [

6

i=1

[

^

k�2

k=0

R

i

k

, a geometrial proedure that generalizes the one used in the

�rst step is available for obtaining a subset of S that ontains all of the Voronoi

neighbors relative to S of the site. This is done in suh a way that as implied in

Bernal (1990), the expeted time involved in obtaining all suh subsets for all

suh sites is bounded above by O(n

2=3

� (logn)

4

)). Thus, sine an O(k � log k)

proedure is also available for omputing the intersetion of k half-spaes in

3�dimensional spae (see Preparata and Muller (1979)), a omputation an

be arried out that shows that the seond step of the algorithm has at most

expeted O(n

2=3

� (logn)

5

) omplexity. Finally, in the third step, the Voronoi

polyhedra of sites in R n (([

6

i=1

[

^

k�2

k=0

R

i

k

) [R

�1

) are onstruted. As shown in

Bernal (1990), a proedure is available for obtaining for eah site in this region

a subset of S that ontains all of the Voronoi neighbors relative to S of the

site. This is done in suh a way that as implied in Bernal (1990), the expeted

time involved in obtaining all suh subsets for all suh sites is bounded above

by O(n

2=3

� (logn)

4

). Thus, sine the O(k � log k) proedure used in the seond

step for omputing the intersetion of k half-spaes is also available in this

step, it an be shown in a manner similar to the one used for the seond step

that the third step of the algorithm has also at most expeted O(n

2=3

� (logn)

5

)

omplexity. Therefore, the entire algorithm has expeted linear omplexity.

In the following we list and desribe, in the order of their �rst appearane

in proedure VORNOI, funtions and proedures used as primitives in that

proedure.

FLOOR(x): For a positive real number x omputes the largest integer less

than or equal to x.
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PRTION(R;R

0

; m; P ): Creates a partition of a ube R into m

3

equal-sized

ells, and then redues it to those ells that interset a region R

0

of R. P will

ontain the data struture that desribes the redued partition.

CEASGN(S; P; A): Using data struture in P obtained from PRTION proe-

dure, assigns eah site in a set S to a ell that ontains the site in the partition

assoiated with P , and for eah ell in the partition reates a list of those sites

assigned to the ell. The orresponding data struture will be ontained in A.

RGASGN(S;R

0

; S

0

; n

0

; B

0

): Loates and orders those sites in a set S that are

ontained in a region R

0

. S

0

will be the set of ordered sites, n

0

will be the

number of sites in S

0

, and for eah h, h = 1; : : : ; n

0

, B

0

(h) will be the h

th

site

in S

0

.

CLTEST(P;A; q;LG(n); f lag; Q): Using data strutures in P and A obtained

from proedures PRTION and CEASGN, tests whether a site q (assumed to

be in R

�1

) is losed. The test onsists of searhing at most the �rst LG(n)

layers of ells that surround q in the partition assoiated with P and A for sites

s

jm

, j = 1; : : : ; 8, m = 1; : : : ; 4, assigned to ells in these layers that render q

losed. As soon as q is found to be losed flag is set equal to 1 and sites s

jm

,

j = 1; : : : ; 8, m = 1; : : : ; 4, that render q losed are plaed in Q. Otherwise

after LG(n) layers have been searhed and q has not been found to be losed

flag is set equal to zero.

POLYHD(q; Q; V ): Given a set Q of sites and a site q, onstruts the Voronoi

polyhedron V of q relative to Q [ fqg through an O(k � log k) worst-ase al-

gorithm for onstruting the intersetion of k half-spaes (see e. g. Preparata

and Muller (1979)).

BNDIST(q; V; d): Computes the maximum distane d, possibly in�nite, from

a site q to the boundary of a polyhedron V .

SEARCH(P;A; q; d; Q): Using data strutures in P and A obtained from

PRTION and CEASGN proedures, given a site q searhes layers of ells that

surround q in the partition assoiated with P and A for sites assigned to ells

in these layers within a distane d from q. Q will ontain the sites found during

this searh.

VNEISV(V; q; S;N): Given a site q in a set S and a polyhedron V suh that

V is the Voronoi polyhedron of q relative to S, identi�es from V those sites
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in S that are Voronoi neighbors relative to S of q. On input N will ontain

for eah site in S a list, possibly empty, of known Voronoi neighbors relative

to S of the site obtained from previous exeutions of VNEISV. During the

exeution of VNEISV, N will be updated so that on output for eah site that

is a Voronoi neighbor relative to S of q, q will appear in the list of known

Voronoi neighbors relative to S of the site.

VNEIGT(q; S;N;Q

0

): Given a site q in a set S, and N as desribed for

VNEISV, produes from N a set Q

0

that will ontain the known Voronoi

neighbors relative to S of q, if any, sine the last exeution of VNEISV.

SCTEST(P;A; q;LG

k

(n); H(f

i

); f lag; Q

00

; Q

000

): Using data strutures in P and

A obtained from proedures PRTION and CEASGN, tests whether a site q

(assumed to be in R

i

k

) is semilosed. The test onsists of searhing at most the

�rst LG

k

(n) layers of ells that surround q in the partition assoiated with P

and A for sites q

j

, s

j

, j = 1; : : : ; 8, assigned to ells in these layers that render

q otant-losed and one-semilosed, respetively. As soon as q is found to

be semilosed flag is set equal to 1, sites s

j

, j = 1; : : : ; 8, that render q one-

semilosed are plaed in Q

00

, and points q

0

j

, j = 1; : : : ; 8, are plaed in Q

000

,

where for eah j, j = 1; : : : ; 8, q

0

j

is the intersetion of q~q

j

and H(f

i

), where

q

j

, j = 1; : : : ; 8, are sites that render q otant-losed. Otherwise after LG

k

(n)

layers have been searhed and q has not been found to be semilosed flag is

set equal to zero.

HALFSP(q;H; C): For a site q and a plane H, q 62 H, omputes the losed

half-spae C that ontains q and that is determined by the plane parallel to

H that ontains (T (q) + q)=2, where T (q) is the point in H that is the per-

pendiular projetion of q onto H.

MAXDST(q; Q

000

; d

00

): Given a site q, and a �nite set of points Q

000

, omputes

the maximum distane d

00

between q and the points in Q

000

.

MAXVAL(d

0

; d

00

): Computes the maximum of two numbers d

0

and d

00

.

The outline of VORNOI follows. Here T is the output variable. For eah

h, h = 1; : : : ; n, if in some ordering of S, q

h

is the h

th

site in S then T (q

h

)

will be the Voronoi polyhedron of q

h

relative to S. All other arguments at as

input variables and are as de�ned in the previous setion.

proedure VORNOI(S;R; n;

^

k;LG(n);LG

0

(n); : : : ;LG

^

k�2

(n);

R

�1

; H(f

1

); : : : ; H(f

6

); R

1

0

; : : : ; R

6

0

; : : : ; R

1

^

k�2

; : : : ; R

6

^

k�2

; T )
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begin

m := FLOOR(n

1=3

);

PRTION(R;R;m; P );

CEASGN(S; P; A);

RGASGN(S;R

�1

; S

�1

; n

�1

; B

�1

);

for h := 1 until n

�1

do

begin

q

h

:= B

�1

(h)

CLTEST(P;A; q

h

;LG(n); f lag; Q);

if (flag = 1) then

begin

POLYHD(q

h

; Q; V );

BNDIST(q

h

; V; d);

d := 2 � d;

SEARCH(P;A; q

h

; d; Q)

end

else Q := S n fq

h

g

POLYHD(q

h

; Q; V );

VNEISV(V; q

h

; S; N);

T (q

h

) := V

end

S

0

:= S n S

�1

;

R

0

:= R nR

�1

;

for k := 0 until

^

k � 2 do

begin

m := FLOOR(2

�k=2

� n

1=3

);

PRTION(R;R

0

; m; P );

CEASGN(S

0

; P; A);

for i := 1 until 6 do

begin

RGASGN(S

0

; R

i

k

; S

i

k

; n

i

k

; B

i

k

);

for h := 1 until n

i

k

do

begin

q

h

:= B

i

k

(h);

VNEIGT(q

h

; S; N;Q

0

);

SCTEST(P;A; q

h

;LG

k

(n); H(f

i

); f lag; Q

00

; Q

000

);

if (flag = 1) then

begin

Q := Q

0

[Q

00

;

POLYHD(q

h

; Q; V );

HALFSP(q

h

; H(f

i

); C);

V := V \ C;
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BNDIST(q

h

; V; d

0

);

d

0

:= 2 � d

0

;

MAXDST(q

h

; Q

000

; d

00

);

d

00

:=

p

2 � d

00

;

d := MAXVAL(d

0

; d

00

);

SEARCH(P;A; q

h

; d; Q);

Q := Q [Q

0

end

else Q := (S

0

[Q

0

) n fq

h

g

POLYHD(q

h

; Q; V );

VNEISV(V; q

h

; S; N);

T (q

h

) := V

end

end

S

0

:= S

0

n [

6

i=1

S

i

k

end

R

0

= R

0

n [

6

i=1

[

^

k�2

k=0

R

i

k

;

RGASGN(S

0

; R

0

; S

0

; n

0

; B

0

);

for h := 1 until n

0

do

begin

q

h

:= B

0

(h);

VNEIGT(q

h

; S; N;Q

0

);

Q := (S

0

[Q

0

) n fq

h

g;

POLYHD(q

h

; Q; V );

VNEISV(V; q

h

; S; N);

T (q

h

) := V

end

end

4. NUMERICAL RESULTS

A Fortran implementation of the algorithm has been developed on a Con-

trol Data Cyber 205 at the National Institute of Standards and Tehnology.

Table 1 shows the omputing time per site in CPU seonds for the imple-

mentation when applied to eight randomly generated sets in a ube for 30

values of n. Table 2 shows the number of 0�dimensional faes per site of the

Voronoi diagrams that were obtained with the implementation for the same

sets and values of n. We note that the numerial results in Table 1 and Ta-

ble 2 seem to on�rm our theoretial results. We note with interest from

the results in Table 2 that the expeted number of 0�dimensional faes per

site of a 3�dimensional Voronoi diagram seems to be inreasing very slowly

as n inreases but appears to be bounded above by the expeted number of

9



0�dimensional faes per site of a 3�dimensional Poisson-Voronoi tessellation

(approximately 6.768) (see Miles (1970)). Finally, we note that in the im-

plementation of the algorithm the onstants , 

0

, 

00

used in the de�nitions

of Setion 2 were all set equal to 1. However, the implementation has been

written so that it funtions essentially as if they had been set equal to those

values that render the implementation the most eÆient. For example, the

implementation has been written so that proedure CLTEST is also exeuted

for sites in R nR

�1

during the onstrution of their Voronoi polyhedra. Doing

this is essentially equivalent to enlarging R

�1

to a region that renders the im-

plementation the most eÆient whih in turn is equivalent to setting  equal

to that value that produes the same e�et.
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n set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8

8

3

0.2303 0.2452 0.2285 0.2457 0.2271 0.2275 0.2275 0.2049

9

3

0.2750 0.2770 0.2702 0.2835 0.2691 0.2751 0.2599 0.2524

10

3

0.3057 0.3175 0.2835 0.3177 0.3011 0.3034 0.2973 0.2876

11

3

0.3147 0.3243 0.2953 0.3158 0.3099 0.3098 0.3219 0.3218

12

3

0.3331 0.3347 0.3230 0.3347 0.3624 0.3028 0.3027 0.3262

13

3

0.3540 0.3393 0.3554 0.3558 0.3447 0.3663 0.3243 0.3324

14

3

0.3505 0.3543 0.3537 0.3739 0.3614 0.3904 0.3342 0.3481

15

3

0.3464 0.3569 0.3651 0.3622 0.3523 0.3773 0.3467 0.3592

16

3

0.3483 0.3550 0.3769 0.3636 0.3359 0.3760 0.3479 0.3650

17

3

0.3477 0.3523 0.3787 0.3608 0.3485 0.3736 0.3429 0.3654

18

3

0.3649 0.3569 0.3596 0.3711 0.3530 0.3528 0.3415 0.3650

19

3

0.3462 0.3521 0.3558 0.3586 0.3483 0.3447 0.3509 0.3473

20

3

0.3555 0.3437 0.3524 0.3623 0.3491 0.3378 0.3408 0.3481

21

3

0.3555 0.3544 0.3548 0.3531 0.3540 0.3430 0.3464 0.3480

22

3

0.3601 0.3553 0.3523 0.3447 0.3591 0.3388 0.3456 0.3432

23

3

0.3601 0.3526 0.3560 0.3438 0.3517 0.3297 0.3346 0.3432

24

3

0.3523 0.3466 0.3561 0.3409 0.3425 0.3290 0.3353 0.3442

25

3

0.3470 0.3391 0.3467 0.3346 0.3379 0.3206 0.3282 0.3368

26

3

0.3431 0.3430 0.3447 0.3270 0.3394 0.3105 0.3321 0.3308

27

3

0.3359 0.3428 0.3322 0.3306 0.3361 0.3189 0.3270 0.3263

28

3

0.3316 0.3377 0.3366 0.3225 0.3291 0.3150 0.3210 0.3272

29

3

0.3263 0.3339 0.3179 0.3173 0.3276 0.3116 0.3202 0.3208

30

3

0.3304 0.3224 0.3273 0.3184 0.3235 0.3107 0.3208 0.3220

31

3

0.3082 0.3243 0.3264 0.3153 0.3191 0.3156 0.3177 0.3188

32

3

0.3148 0.3139 0.3079 0.3030 0.3151 0.3259 0.3064 0.3226

33

3

0.2988 0.3300 0.3000 0.3096 0.2982 0.3036 0.3064 0.3065

36

3

0.3060 0.3040 0.3003 0.3102 0.2941 0.3037 0.2981 0.3072

39

3

0.2856 0.2871 0.2904 0.2953 0.2939 0.2908 0.2920 0.2957

42

3

0.2863 0.2813 0.2822 0.2891 0.2842 0.2866 0.2901 0.2774

48

3

0.2740 0.2664 0.2676 0.2759 0.2686 0.2654 0.2667 0.2648

Table 1: Computing time per site.
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n set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8

8

3

6.4043 6.3301 6.3496 6.3398 6.3789 6.4141 6.4141 6.3555

9

3

6.4595 6.3937 6.4033 6.4719 6.4225 6.4170 6.4115 6.4472

10

3

6.4710 6.4430 6.4610 6.4830 6.4610 6.4810 6.4440 6.5030

11

3

6.4936 6.5177 6.5297 6.5229 6.5289 6.5289 6.5177 6.5177

12

3

6.5758 6.5336 6.5706 6.5336 6.5156 6.5538 6.5538 6.5752

13

3

6.5772 6.5576 6.5544 6.5603 6.5872 6.5284 6.5690 6.5899

14

3

6.6148 6.5911 6.5652 6.6020 6.6148 6.6017 6.5860 6.6323

15

3

6.6216 6.6071 6.5609 6.6406 6.6308 6.6139 6.5961 6.6394

16

3

6.6394 6.5989 6.5972 6.6492 6.6316 6.6265 6.6445 6.6316

17

3

6.6585 6.6237 6.6076 6.6304 6.6381 6.6507 6.6640 6.6332

18

3

6.6408 6.6502 6.6487 6.6476 6.6626 6.6619 6.6493 6.6408

19

3

6.6553 6.6615 6.6545 6.6673 6.6602 6.6620 6.6606 6.6434

20

3

6.6583 6.6700 6.6524 6.6546 6.6621 6.6640 6.6610 6.6574

21

3

6.6622 6.6656 6.6628 6.6754 6.6758 6.6553 6.6634 6.6589

22

3

6.6767 6.6697 6.6595 6.6657 6.6802 6.6828 6.6665 6.6686

23

3

6.6869 6.6815 6.6615 6.6667 6.6763 6.6822 6.6694 6.6734

24

3

6.6811 6.6736 6.6748 6.6763 6.6778 6.6768 6.6782 6.6823

25

3

6.6797 6.6807 6.6799 6.6768 6.6733 6.6825 6.6845 6.6798

26

3

6.6758 6.6912 6.6880 6.6804 6.6912 6.6925 6.6907 6.6838

27

3

6.6815 6.6925 6.6803 6.6843 6.6888 6.6964 6.6901 6.6827

28

3

6.6824 6.6959 6.6893 6.6879 6.6969 6.7047 6.6959 6.6795

29

3

6.6953 6.6996 6.6899 6.6907 6.6975 6.7084 6.6962 6.6835

30

3

6.6991 6.7053 6.6976 6.6893 6.7071 6.7116 6.6984 6.6986

31

3

6.7004 6.7010 6.6961 6.7050 6.7007 6.7160 6.7073 6.6960

32

3

6.6978 6.7031 6.7079 6.7088 6.7041 6.7028 6.7031 6.7047

33

3

6.6955 6.7014 6.7113 6.7142 6.7017 6.7125 6.7148 6.7062

36

3

6.7185 6.7140 6.7090 6.7092 6.7166 6.7114 6.7128 6.7194

39

3

6.7193 6.7171 6.7188 6.7162 6.7144 6.7172 6.7164 6.7165

42

3

6.7160 6.7264 6.7205 6.7218 6.7226 6.7232 6.7219 6.7191

48

3

6.7262 6.7301 6.7221 6.7289 6.7303 6.7274 6.7244 6.7290

Table 2: Number of 0�dimensional faes per site.
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